An Active Penalty Method for the Incompressible Navier-Stokes Equations

ثبت نشده
چکیده

The volume penalty method provides a simple, efficient approach for solving the incompressible Navier-Stokes equations in domains with boundaries or in the presence of moving objects. Despite the simplicity, the method suffers from poor convergence in the penalty parameter, thereby restricting accuracy of any numerical method. We demonstrate that one may achieve high order accuracy by introducing an active penalty term. We discuss how to construct the modified penalty term, and then provide 2D numerical examples demonstrating improved convergence for the heat equation and Navier-Stokes equations. In addition, we show that modifying the penalty term does not significantly alter the time step restriction from that of the conventional penalty method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Pressure Approximation via Projection Methods for Nonstationary Incompressible Navier-Stokes Equations

Projection methods are an efficient tool to approximate strong solutions of the incompressible Navier-Stokes equations; as a major deficiency, these methods often suffer from reduced accuracy of pressure updates caused by nonphysical boundary data. After a short review, quantitative control of arising boundary layers in Chorin’s scheme is given under realistic regularity assumptions. Then, we p...

متن کامل

Finite Element Analysis of Incompressible Viscous Flows by the Penalty Function Formulation

A review of recent work and new developments are presented for the penalty-function, finite element formulation of incompressible viscous flows. Basic features of the penalty method are described in the context of the steady and unsteady Navier-Stokes equations. Galerkin and “upwind” treatments of convection terms are discussed. Numerical results indicate the versatility and effectiveness of th...

متن کامل

High-order Discontinuous Galerkin Methods for Incompressible Flows

Abstract. The spatial discretization of the unsteady incompressible Navier-Stokes equations is stated as a system of Differential Algebraic Equations (DAEs), corresponding to the conservation of momentum equation plus the constraint due to the incompressibility condition. Runge-Kutta methods applied to the solution of the resulting index-2 DAE system are analyzed, allowing a critical comparison...

متن کامل

Turbulent Flow over Cars

In this paper the flow behaviour over a number of car bodies is studied. For this purpose the unsteady 2-D incompressible Navier-Stokes equations have been applied. After averaging and nondimensionalizing the equations, the system of equations has been transformed from the Cartesian (x-y) coordinates to a body fitted generalized (-) coordinate. As the flow is incompressible, the density in the ...

متن کامل

The Gcr-simple Solver and the Simple-type Preconditioning for Incompressible Navier-stokes Equations

The discretization of incompressible Navier-Stokes equation leads to a large linear system with a nonsymmetric and indefinite coefficient matrix. Many methods are known to overcome these difficulties: Uzawa method, SIMPLE-type methods, penalty method, pressure correction method, etc. In this paper, Krylov accelerated versions of the SIMPLE(R) methods: GCR-SIMPLE(R) are investigated, where SIMPL...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013